By using this site you agree to the use of cookies for analytics, personalized content and ads. Learn More

i----\.un.om.m : De\/e|o|)e|‘ Network s Sign in MSDN subscriptions

magazine Issues and downloads ~ Subscribe Submit article

Issues and downloads /2013 /May 2013 / MVVM - Commands, RelayCommands and EventToCommand

MAY 2013 VOLUME 28 NUMBER 05

MVVM - Commands,
RelayCommands and
EventToCommand

By Laurent Bugnion | May 2013

In previous installments of this series, | described the importance of
decoupling the components of an application to make the application easier
to unit test, maintain and extend. | also showed how adding design-time data
makes it easier to work in Expression Blend or the Visual Studio designer in a
visual manner.

In this article, | take a closer look at one of the important components of any
Model-View-ViewModel application: the command. Historically, the .NET
Framework has always been an event-based framework: a class exposes an
event that is raised by the class instances when subscribers need to be
notified. On the other hand, the subscribers provide an EventHandler, which is
typically a method with two parameters: the sender of the event and an
instance of a class deriving from EventArgs. When the event is raised, the
event-handling method is executed and the EventArgs instance carries
additional information (if available) about what caused the event in the first
place.

This approach is fairly simple and successful for many scenarios. In .NET, it is
often used to call back a subscriber after a Web operation completes (or fails).
It is used by a sensor (such as location, orientation, proximity and so on) to
notify the class that uses it that a condition has changed (for example, the
user has moved, the screen has rotated, the device is close to another one,
and the like). Most notably, this approach is used by Ul elements to handle
user events—for example, the click of a button, the movement of the mouse
and many more.

For all their utility, event handlers have one problematic side effect: they can
create a tight coupling between the instance that exposes the event and the
instance that subscribes to it. The system needs to keep track of event
handlers so that they can be executed when the event is raised, but the strong
link this creates might prevent garbage collection. Of course, this isn't an issue
if the event handler is a static method, but it is not always possible to handle
all events with static methods only. This is a frequent cause for memory leaks
in .NET.

Another consequence of the tight coupling between an event and its handler
is that the event handler for a Ul element declared in XAML must be found in
the attached code-behind file. If it is not there (or if there is no attached code-
behind file), the compilation will fail with an error. This is especially an issue

Page 1 of 12 (:> Assembled by RunPDF.com

when working with list controls and associated DataTemplates. When an
element of the template must be actuated, an event handler can be defined,
but as a consequence, the DataTemplate cannot be moved into an external
ResourceDictionary, as shown in Figure 1. This code would cause a
compilation error.

Figure 1. DataTemplate with Event Handler

<!--In MainPage.xaml-->

<GridvView
ItemsSource="{Binding DataItems}"
ItemTemplate="{StaticResource DataItemTemplate}" />

<!--In an external resource dictionary-->

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<DataTemplate x:Key="DataItemTemplate">
<!--This causes a compilation error-->
<StackPanel Tapped="ItemTapped">
<l--iii-=>
</StackPanel>
</DataTemplate>
</ResourceDictionary>
// In MainPage.xaml.cs
private void ItemTapped(
object sender,
TappedRoutedEventArgs e)

{

var panel = (FrameworkElement)sender;
var item = (DataItem)panel.DataContext;
((Frame)Window.Current.Content).Navigate(typeof (DetailsPage), item);

¥

Thankfully, there is a solution to this issue: using a command to expose the
“event handler” and bind the Ul element to that command by using a XAML
data-binding. Because data-bindings are evaluated only at run time, they
won't cause a compilation error. And because they are loosely coupled, they
won't risk causing memory leaks.

What's a Command?

Commands are an implementation of the ICommand interface that is part of
the .NET Framework. This interface is used a lot in MVVM applications, but it
is useful not only in XAML-based apps. The ICommand interface specifies
three members:

The method Execute(object) is called when the command is actuated. It has
one parameter, which can be used to pass additional information from the
caller to the command.

The method CanExecute(object) returns a Boolean. If the return value is true,
it means that the command can be executed. The parameter is the same
one as for the Execute method. When used in XAML controls that support
the Command property, the control will be automatically disabled if
CanExecute returns false.

Page 2 of 12 (:) Assembled by RunPDF.com

The CanExecuteChanged event handler must be raised by the command
implementation when the CanExecute method needs to be reevaluated. In
XAML, when an instance of ICommand is bound to a control’'s Command
property through a data-binding, raising the CanExecuteChanged event will
automatically call the CanExecute method, and the control will be enabled
or disabled accordingly.

Note that in Windows Presentation Foundation (WPF), the
CanExecuteChanged event does not need to be raised manually. A class
named CommandManager is observing the user interface and calls the
CanExecute method when it deems it necessary. In all other XAML
frameworks, however (including Windows RT), the developer must take care
of raising this event when it's needed.

Of course, having to implement the ICommand interface every time a
command must be added to the project is impractical. This is why some of
the most popular frameworks and toolkits in .NET offer a generic
implementation of ICommand.

The RelayCommand

In the MVVM Light Toolkit, the open-source toolkit described in the previous
articles in this series, the ICommand implementation is called RelayCommand.
The constructor of this class has two parameters:

The first parameter is compulsory. It is used for the Execute method that
the ICommand interface requires. For example, a lambda expression can be
used as shown in Figure 3. Alternatively, the syntax shown in Figure 2 can
be used, where a delegate to a method is provided for the Execute
parameter.

The second parameter is optional. It is a delegate for the CanExecute
method that's specified by ICommand. This delegate must return a
Boolean. Here, too, a lambda expression can be used, as shown in Figure 2,
as can a delegate to a method defined somewhere else.

Figure 2. Creating a RelayCommand

public RelayCommand MyCommand

{
get;
private set;

¥

public MainViewModel()
{

MyCommand = new RelayCommand(
ExecuteMyCommand,
() => _canExecuteMyCommand);

b

private void ExecuteMyCommand()

{
// Do something

b

The code in Figure 3 shows a more compact syntax for a RelayCommand,
accepting a parameter of type RssArticle. This example is taken from the
RssReader sample application that was implemented in the previous articles.

Page 3 of 12

PN

L %

Assembled by RunPDF.com

The code in the property getter checks first (thanks to the "??" operator)
whether the _navigateToArticleCommand attribute is already created. If yes,
the attribute is returned. If not, the command is created and stored in the
attribute before it is returned. The command takes one parameter of type
RssArticle, as specified by the generic parameter in the command declaration.
In XAML, as we will see later in Figure 9, the parameter can be specified with
any XAML expression, such as a Binding, a StaticResource or an explicit value;
in that last case (for example “True”, “1234.45", or "Hello world"), the
RelayCommand will attempt to convert the value (specified as a string in the
XAML markup) to the type specified in the RelayCommand declaration. This
conversion might fail if no converter is found in the system by the XAML
parser or if the value is invalid.

Figure 3. The NavigateToArticleCommand (with One Parameter)

private RelayCommand<RssArticle> _navigateToArticleCommand;
public RelayCommand<RssArticle> NavigateToArticleCommand

{
get

{
return _navigateToArticleCommand
?? (_navigateToArticleCommand = new RelayCommand<RssArticle>(
article =>

{

_navigationService.NavigateTo(typeof (DetailsPage), article);

)

Figure 4 shows the RefreshCommand, which is used in the RssReader sample
application to reload the list of articles from the server. This command doesn't
require any parameter.

Figure 4. The RefreshCommand (No Parameters)
private RelayCommand _refreshCommand;

public RelayCommand RefreshCommand

{
get

{
return _refreshCommand
?? (_refreshCommand = new RelayCommand(
async () =>
{

await Refresh();

)5

A developer can specify when the command can be executed by
implementing the CanExecute delegate as the second parameter of the
RelayCommand constructor. For instance, the Refresh method should not be
called while the Web client is waiting for a response from the Web server. The

Page 4 of 12

G
'$ Assembled by RunPDF.com

easiest way to do that is to disable the control used to execute the command.
However, at the time when the RefreshCommand is implemented, the
developer does not know what kind of control will be used by the designer.
By specifying the CanExecute delegate (and calling the CanExecuteChanged
event at appropriate times), the developer can reach the desired effect without
having to worry about impacting the Ul. To do that, we can modify the
RefreshCommand as shown in Figure 5. When
RefreshCommand.RaiseCanExecuteChanged() is called, the value if
_isRefreshing is evaluated and the bound button will be disabled or enabled
accordingly.

Figure 5. Implementing the CanExecute Delegate in the
RefreshCommand

private bool _isRefreshing;
private RelayCommand _refreshCommand;

public RelayCommand RefreshCommand

{
get

{
return _refreshCommand
?? (_refreshCommand = new RelayCommand(
async () =>
{
if (_isRefreshing)

{

return;

i

_isRefreshing = true;
RefreshCommand.RaiseCanExecuteChanged();

await Refresh();

_isRefreshing = false;
RefreshCommand.RaiseCanExecuteChanged();

1
() => !_isRefreshing));

Using a Command in XAML

One advantage of using commands is that it encourages a clean workflow
when developing the application. On one hand, developers concentrate on
exposing functionality in the view models by creating properties of type
RelayCommand and implementing the Execute and (optionally) the
CanExecute delegates. On the other hand, whoever is in charge of the user
interface implementation (sometimes a designer, sometimes an integrator)
can decide which controls should be used to actuate the command. At a later
time, the Ul can be modified with different controls without having to change
the command implementation in the view model. For instance, the
RefreshCommand can be data-bound to a Button in a Windows 8 app's
BottomApplicationBar with the markup shown in Figure 6. Because the
command is exposed as a property on the MainViewModel, we can use a
simple Binding syntax. And because the CanExecute delegate is implemented,
clicking the button will cause the Refresh method to be called, and the Button
will be disabled until the asynchronous operation is completed.

Page 5 of 12

G
'$ Assembled by RunPDF.com

Figure 6. Binding the Button’'s Command Property to the
RefreshCommand in Windows 8

<Page.BottomAppBar>
<AppBar>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="@.5*" />
<ColumnDefinition Width="@.5*" />
</Grid.ColumnDefinitions>

<StackPanel Orientation="Horizontal">
<Button Style="{StaticResource RefreshAppBarButtonStyle}"
Command="{Binding RefreshCommand}" />
</StackPanel>
</Grid>
</AppBar>
</Page.BottomAppBar>

In Windows Phone, one annoying limitation of the AppBar is that you cannot
bind commands to an ApplicationBarlconButton. Libraries are available that
offer a way around this limitation, such as the Bindable Application Bar or
AppBarUtils referenced at the end of this article. However, you can overcome
this limitation with just a few lines of code-behind, so it might not be
necessary to use a third-party library. For example, in the Windows Phone
version of the RssReader sample app, the RefreshCommand is executed with
the code shown in Figure 7. Keep in mind that it is only the
ApplicationBarlconButton that cannot be bound to a command. Normal
Button instances in the Ul have Command and CommandParameter
properties just as in other XAML frameworks.

Figure 7. Executing the Command in Windows Phone

<!--In MainPage.xaml-->
<phone:PhoneApplicationPage.ApplicationBar>
<shell:ApplicationBar>
<shell:ApplicationBarIconButton
IconUri="/Assets/AppBar/sync.png"
Text="refresh"
Click="RefreshClick" />
</shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

// In MainPage.xaml.cs
private void RefreshClick(object sender, EventArgs e)

{
var vm = (MainViewModel)DataContext;
vm.RefreshCommand.Execute(null);

¥

Commands for Every Element

Unfortunately, only a rather small subset of controls support commands out
of the box, with Command and CommandParameter properties. In addition,
the bound command will be actuated only when the control is clicked (or

Page 6 of 12

G
N Assembled by RunPDF.com

tapped with a finger), but no other events are supported. In the case of the
RssReader's NavigateToArticleCommand, we want it to be actuated when the
item is tapped in the list control. We already saw that using a command
instead of an event handler allows us flexibility in moving the DataTemplate to
an external ResourceDictionary. Now we need the flexibility of invoking a
command on any Ul element (not just a button) for any event. This is where
Blend behaviors come to the rescue. Note that at the time of writing, Blend
behaviors are not available for Windows 8. They are, however, available for
every other XAML-based framework. Later in this article, you'll see how to
work around this limitation in Windows 8.

Blend behaviors are referred to this way because they were developed by the
Blend team, but they do not require Blend. In fact, they are strongly inspired
by a pattern called Attached Behaviors, built with attached properties in
XAML. Attached behaviors were used by the XAML community before Blend
behaviors appeared. (Two good articles about attached behaviors are listed at
the end of this article.) However, Blend behaviors improve toolability
tremendously. Even though you don’t need Blend to get these behaviors to
work, using Blend makes adding a behavior to a Ul element and configuring it
much easier. To use Blend behaviors, you must add
System.Windows.Interactivity.dll to your app'’s references. This reference is
already added in every MVVM Light application by default.

Adding the NavigateToArticleCommand to the RssArticle DataTemplate is
quite easy with the following steps:

1. Open the RssReader application’s MainPage.xaml in Blend. For this, you can
open the RssReader solution in Blend directly, or you can right-click
MainPage.xaml in Visual Studio’s Solution Explorer and select Open in
Blend. Make sure that you select the Windows Phone project’s
MainPage.xaml, and not the one for Windows 8.

2. In Blend, in the Objects and Timeline pane, right-click the LongListSelector
and select Edit Additional Templates, Edit Item Template, Edit Current.

3. Next to the Projects tab, select Assets and then select the Behaviors
category.

4. Drag an EventToCommand from the Assets pane onto the StackPanel at
the root of the ItemTemplate in the Objects and Timeline pane, as shown in
Figure 8. Because the StackPanel’s Background is set to Transparent (and
not to No Brush), the command will be invoked when the user taps
anywhere on the item, which improves the user experience.

5. With the new EventToCommand element selected, open the Properties
pane and check that TriggerType is set to EventTrigger. Note that you can
also use EventToCommand with other triggers, such as DataTrigger.

6. Set the EventName to Tap. We want the command to be invoked when the
user taps the StackPanel.

7. In the Miscellaneous category, click the small square next to the Command
property. This opens a context menu. Select Create Data Binding.

We want to create a binding between the Command property and the
NavigateToArticleCommand located in the MainViewModel. Because this view
model is exposed as the Main property of the ViewModelLocator, it is easy to
locate in Blend's data-binding dialog.

1. In the Create Data Binding dialog, under Binding Type, select
StaticResource. In MVVM Light applications, the ViewModelLocator is
stored as a resource in App.xaml. This allows it to be found through any of
Blend's data dialogs.

Page 7 of 12

G
'$ Assembled by RunPDF.com

2. Under Resource, select Locator. Then, under Path, select
Main/NavigateToArticleCommand and click OK.

The command needs a parameter of type RssArticle. We want to pass the
current article, which is conveniently the DataContext of the ltemTemplate we
are editing. Binding to the current DataContext is expressed by “empty
binding”: "{Binding}". To create such a binding in Blend, open the data-
binding editor by clicking the small square next to the CommandParameter
property and selecting Create Data Binding from the context menu. In the
dialog, check the Custom check box above the Path field, and then click OK.
This creates a binding with an empty Path, which is what we wanted in the first
place.

Note: You can also use an InvokeCommandAction instead of MVVM Light's
EventToCommand. This behavior is part of the System.Windows.Interactivity
DLL. It is almost equivalent to EventToCommand, but without some of the
advanced features.

Projects Assefs X States Parts Device

Praject |* CallMethodAction
ntrols |kl ChangeProperty&ction
b Styles [¥ ControlStoryboardAdtion

Bl it DataStateBe

£ FluidMoveSetTagBehavior

: Ikl GoToStateAction
Locations
¥ InvokeCommandAction

Objects and Timeline

-

Q

X RssArdicleTemplate [ContentPresenter Template)

» 4 ¥ [temTemplate
< Bismcbonc
[T [TextBlock]
[T [TextBlock]
O [Rectangle]

Figure 8. Adding the EventToCommand behavior in Blend

The XAML markup generated by this process is shown in Figure 9.

Figure 9. XAML Markup for EventToCommand

<phone:PhoneApplicationPage.Resources>
<DataTemplate x:Key="RssArticleTemplate">
<StackPanel Background="Transparent">
<i:Interaction.Triggers>
<i:EventTrigger EventName="Tap">
<command: EventToCommand
Command="{Binding Main.NavigateToArticleCommand,
Mode=0OneWay,
Source={StaticResource Locator}}"
CommandParameter="{Binding Mode=OneWay}" />
</i:EventTrigger>
</i:Interaction.Triggers>
<l--...=->
</StackPanel>
</DataTemplate>
</phone:PhoneApplicationPage.Resources>

Page 8 of 12

G
N Assembled by RunPDF.com

Using EventToCommand in Windows 8

In Windows 8, Blend behaviors are missing, as | mentioned earlier. In the
RssReader application, open the Windows 8 project’'s MainPage.xaml. The lack
of behaviors is solved here by handling the Tapped event on the
DataTemplate’'s main Border and having the event handler in the
MainPage.xaml.cs code-behind. Having to do this is annoying because it
prevents us from moving the DataTemplate to a ResourceDictionary to have a
cleaner XAML file.

To solve this issue, we can use a less toolable version of EventToCommand
that's implemented using the Attached Behavior pattern mentioned earlier.
You will find a Windows 8 implementation of EventToCommand in the Data
folder of the sample application source code. Add this file to the Windows 8
version of the RssReader project—for example, to the Helpers folder. Then
edit the RssArticleTemplate markup in MainPage.xaml as shown in Figure 10.

Figure 10. EventToCommand Behavior in Windows 8

<DataTemplate x:Key="RssArticleTemplate">
<Border Height="140"
Width="290"
Padding="5"
Background="Black"
xmlns:b="using:Win8Utils.Behaviors"
b:EventToCommand.Event="Tapped"
b:EventToCommand.Command="{Binding Main.NavigateToArticleCommand,
Mode=0nelWay,
Source={StaticResourcelLocator}}"
b:EventToCommand.CommandParameter="{Binding}">
<l--lii-=>
</Border>
</DataTemplate>

Of course, this version of EventToCommand has a few disadvantages. Adding
new events requires the source code to be extended, but it is fairly easy based
on the current implementation, which handles the Tapped, TextChanged and
SelectionChanged events. Also, this implementation does not support
tooling, which the Blend behaviors we used for the Windows Phone project
do. It does, however, work properly and allows the DataTemplate to be
moved in a ResourceDictionary, which was the goal.

Wrapping Up

This article has presented in-depth an important component of Model-View-
ViewModel applications (which can also be used in non-MVVM apps): the
ICommand interface and its RelayCommand implementation available in the
MVVM Light Toolkit. You've seen how to use the EventToCommand behavior
in Blend in Windows Phone and how to use an alternate version in Windows
8, which does not support Blend behaviors.

References

Page 9 of 12 (:) Assembled by RunPDF.com

The MVVM Light Toolkit can be downloaded at
http://mvvmlight.codeplex.com.

Bindable Application Bar for Windows Phone on Codeplex:
http://bindableapplicationb.codeplex.com

AppBarUtils for Windows Phone on Codeplex:
http://appbarutils.codeplex.com

"Introduction to Attached Behaviors in WPF" by Josh Smith:
http://www.codeproject.com/Articles/28959/Introduction-to-Attached-
Behaviors-in-WPF

"The Attached Behavior Pattern” by John Gossman:

http://blogs.msdn.com/b/johngossman/archive/2008/05/07/the-attached-
behavior-pattern.aspx

Laurent Bugnion is senior director for IdentityMine Inc., a Microsoft partner
working with technologies such as Windows Presentation Foundation,
Silverlight, Pixelsense, Kinect, Windows 8, Windows Phone and UX. He’s based
in Zurich, Switzerland. He is also a Microsoft MVP and a Microsoft Regional
Director.

Ir appli n:
vert, compress, annotate,
redact... and much more.

A% accusoft

New .NET IDE

Cross-platform.
Killer code analysis.
Great for refactoring.

JET A
BRAINS

GET EARLY ACCESS

Page 10 of 12 (:> Assembled by RunPDF.com

